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. The characteristic wave approach is developed as an alternative to
modal methods which may lead to significant errors in the presence of

impulsive or concentrated loads.

The method 1is applied to periodic

structures. Some special phenomena like cumulation effects and transirions to

ergodicity are analyzed.

INTRODUCTION

Controlled large space structures, which will
l1ikely be composed of networks of long slender
sesbers, are subjected to disturbances (coming
from the actuators) with a relatively small
contact zone and short time interval. From the
mathenatical viewpoint such disturbances are
charscterized by discontinuities which can be
considered as s very high frequency. In
truncation techniques which asre used in modal
analysis the contribution of high frequencies is
lost, and therefore, the impulsive concentrated
loads are supposed to be treated by some other
methods.

Since any discontinuity propagates with the
characteristic speed, it is reasonable to turn to
the characteristic wave approach in treating the
fopulsive loads. The advantage of this approach
i{s i{n the fact that characteristic speeds depend
only on the coefficients at the highest (second
order) derivatives in the governing equation of
structural members which significantly simplifies
the analysis of characteristic waves.

Thus, 1t appears that the application of the
characteristic wave approach {s the wmost
beneficial in the domains where spectral methods
fall. That is why it can be used as a supplement
tu modal methods for linear analysis of con-
trolled structures when loads can be decomposed
in to “smooth” and impulsive components.

In this article, some aspects of characteristic
wave propagation, reflection and transmission in
structures with one-dimensional  structural
menbers as well as possible engineering tools for
their analysis are discussed.

PROPAGATION OF IMPULSIVE LOADS IN
ONE-DIMENSIONAL STRUCTURAL MEMBERS

We will start with a one-dimensional structural
sember subjected to a concentrated or impulsive
load assuning that

A% ¢c L, and At << :-:‘
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in which L {s the length of the structural
menber, Af is the width of the contact zone of
the impulse, At is the duration of the
concentrated load, and C is the characteristic
speed of wave propagation, while
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Here Cp, OCp, Cy. Cy. and Cg are the
characteristic speeds for longitudinal,
torsional, shear, bending and transverse string
wvaves, respectively. E is the Young modulus, G
is the shear modulus, A is the cross-sectional
area, Ag; is an effective shear area of a
Timoshenko beam, EI is the cross-sectional area
noment of inertia, pl is the rotatory inertia per
unit length, p is the mass per nit length, T is
the string tension, W. Flugge, 1962.

For homogenious structural members all the
characteristic speeds (2) are constant, and
consequently, the width A! as well as the
duration At of the impulse will be constant too.
However, the initial configuration of the impulse
will be preserved only for the simple wave
equation without damping.

In all other cases due to the dispersion
phenomenon this configuration, strictly speaking,
will not be preserved. Nevertheless, the
dispersion can be ignored if the conditions (1)
are satisfied. For further convenience we will
introduce an equivalent rectangular impulse of
the same length and energ:. For such a
rectangular impulse, all the waves listed in (2)
are decoupled even if they propagate
simultaneously in a structural member, and this
is the most important advantage of the
characteristic wave approach to propagation of
{mpulsive loads.

As follows from the enerzy conservation law the
height of the rectangular impulse expressed in
terms of velocity, strain or stress will be
constant if there 1is 1. material damping. If
material damping is proportional to the velocity
being characterized by the damping coefficient ¢
then the height h of the rectangular irpulse will
exponentially decrease:

h? - h2, ot )

NON-HOMOGEREITY EFFECTS

The situation becomes more complicated even for a
rectangular impulse 1f the speed of propagation
is not constant. This effect can be caused by
non-linear material properties (if the impulse is
large enough to generate finite strains) or by
non-homogenious properties of the structural
member.

In the first case the speed becomes non-
characteristic since it depends on the magnitude
of the transmitted parameters, {.e., for a
rectanpular impulse:

e = c(h) (%)

This dependence may Jead to a qualitatively new
effects such as shock wave formation.
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second case the speed remains
characteristic, but it dcpends on the space

coordinate:
C - c(x) (5)

Although the governing equations for wave

propagations remain linear (but with variable

coefficients) the dependence (5) may lead to some

surprising effects. In order to describe them,

ve will start with the energy balance. The

energy E of & propagating dmpulse consist of
potential and kinetic components:

*2

E= 1 J

2
x

2
p(Czlt] - [vf) dx (6

1

in which x; and x; are the space coordinates of
the trailing and leading fronts of the
propagating wave, [v] and [e¢] are the impulsive
velocity and strain, respectively, while

fe] = -clv) M

as follows from the kinematical condition at the

front of a discontinuity, Miklowitz, (1984).
Hence, for s rectangular impulse:

E-=plviZ (x3 - %) (8)
and instead of Eq. (3) now one obtaius:

h2(xy - x)) = h? ageSt (9

The first effect which can be found from Fq. (9)
is associated with the specific  energy
cupulation, {.e., with the unbounded growth of h
due to shrinking width (x3 - x3) of the
propagating impulse. This effect was first
described and explained by M. Zak, 1983,

The second effect is associated with a trapping
of a propagating impulse within s localized area
of a structural member. Similar effect of normal
mode localization was predicted by C.H. Hodges,
1982, in connection with a system of coupled
linear oscillators with damping. Thus, the
trapping effect of s propagating impulse can be
considered as a “"continuum version™ of the normsl
mode localization. A mathematical treatment of
this effect is presented below.

Consider a function (5) in the following form:

c Co at x <x_ and x > x_,

7Co at x> x > x 0<cyc<cl

LI

Such a discontinuity of the characteristic speed
C within a small segment (x*‘ - x,) < Af can be
caused by some structural irregularities (such as
miterial inclusions, joints, etc.)

As follows from Eq. (10)

o at xl-x*-Al, X=X,
82-Co(1-7)t at X <x <xp<x,

X2-%X) - AI-(X'*-X’) at X)<x_, X>x 1)

Al-(x**-x*)+cc(1-,)t at x, “x1<x x>x,

*k "’
al at Xy, X3 > X

(10)

Substituting (11) into (9) one finds:

hze-Lt at x,=x ;Anlxzsx.
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< x2 < x‘*

Simple analysis of Eq. (1?2) shows
function h(x) has maxjmum at x) < X,
if

Eotopy (14)
This maximum is:
t
(1 -5%)
h x = hg : e §

(15)

The maximum of hg,, as a function of r/f will be
at

[
E=2 (1 + J5)

(16)
and therefore:
h2pax . max = 8.15 hZg (17
Substituting (16) into (14) one obtains:
A < 0.382 (18)
But, as follows from (13):
- ¢ (ley+d)t
22 ¢ a9

h3 = hoe

Hence, the trapping effect will be the strongest
1f

A = 0.382 (20)
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Indeed, in this case the function (12) has the
sharpest shapée since Eq. (16) provides the
largest maximum (17), while Eq. (20) leads to the
highest degree of dissipation after this maximum.
Thus, the conditions (16) and (20) can be used as
the key for structural implementation of the
trapping effect.

Governing Equations

As shown by Z2ak, M. 1985, the governing equations
for a propagation, reflection and transmission of
an initial impulse in a two-member structure with
{solated ends at x = 1, and x = 3, and & joint at
x = 2 form a system of difference equations:

hp41 = Aby (21)
where
0 €120 © Y hy2
A -6128222 0 0 -f)62(1-2; ‘7. h21
-£2362(1-2) 0 0 -C230222 |, ha3

in which hjj i{s the vave at x = 2 coming from x =
1, etc. ¢y and {14 are the damping coefficients

in the correspending structural membere, £;, {3,
{3 are the damping coefficients at x = 1,2,3,
respectively, {y is the reflection coefficient at
X =2, while {; =l -1,

The same procedure can be applied to sult{i-member
structural systems, while the matrix A will
acttsain new submatrices corresponding to
additignal strucrural me:hers (like 8 stiffness
mat1ix in finite element methods).

Thus, ary structure with N identical structural
aembers subjected to impulsive loads is governed
by the matrix difference equation (21) while the
order of this system is 2n.

Analysis of Solutions

In the case of n-member structure the solution to
the governing equation (21) where the matrix A {is
of the order 2n can be written in the following
form:

by = Ak hy, k=0,1,2,... ¢3))
All the qualitative properties of this solution
sre defined by the eigenvalues of the matrix A,
f.e., by the roots of the characteristic
polynomial:

ia - X1} -0 (24)

For instance, the solution is stable {f

X1} <1, 1 =1,2,... 2n (25)
By applying a linear fractional transformation
Ax 2t (26)
A-1

to Eq. (25) one reduces the stahility analysis to
conventional methods.

Iransition to Ergedicity

So far the ouly structures with fdcutical wenbers
(characterized by the dimentionless time delasy f)
vere considered. It was demonstrated that there
exists a formal analogy between the matrix
techniques for treating these structures under
impulsive loads and for conventional wmodal
anilysis (although the matrices have different
physical nature). However, 1in reality the
identicalness of structural members even in
periodic structures ic an exception rather than a
rule. Indeed, different time delays for
different structural members can be caused not
only by different lengths, but also by different
characteristic speeds. In turn, different
characteristic speeds may bccur if joints convert
one type of deformation into another (see Eg.
(2)). Another source of different time delays is
associatrd with external forces if they applied
not to jeints. In this case, the points of their
spplication wmust be considered as additional
Joints, but without reflection or damping, and
this will lead to additional structural menmbers
with different time delays. As will be shown
below, different time drlays lead to new
qualitative effects which do not ocecur in modal
methods.

For simplicity, wve will start with the two-membc:

structure and assume the following
(dimensionless) lengths:
AB = 4, BC = 6 27)

Then, the characteristic equation for this t.o-
vember system obviously has the order 24 (which
is the least common multiple of 2x4 and 2x6)

But in the case
AB - 1, BC = /7 (28)

the ratio of the time delays is irrational, and
therefore, for successive rational approximations
of JZ the order of the governing difference
equation tends to infinity as:

4, 14, 282, 1414, ... etc. (29)

Now it is easy to deduce, that if in an n-member
structure the time delays T3, 2. ... Tp ..€
commensurate, then the order of the governing
difference equation will be finite and equal to
the least common multiple of 2ry, 215, ... 2.

1f at least two time delays are not commersurate,
this order will tend to infinity. Obviously,
this effect does not have an analogy in modal
spproach where the order of the governing
differential equation depends only on the number
of modes (or finite elements) considered.

In order to clarify the physical meaning of such
a phenomenon let us start with the following
question: during what time interval T an {nitial
impulse will return to its original location in
"one piece"? Simple geometrical consideration
show that

Te2ifAB =1, BC=1
T=26 if AB=1, BC =6 (30)

T-~«if AB~1, BC - /2
In other wnrds, this (dimrncion)ess) interval is

equal to the order of the governing difference
equation.
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Thus, if at least two time delays in an n-member
structure are not commensurate, the system will
never return to its initial position, {.e., the
motion will lose its periodicity. In classical
mechanics such systems are known as ergodic
systems. For infinite nuaber of times they pass
through every state of wotion (which s
consistent with constraints) spending equal time
intervals near ech state.

A} however, the rational numbers are a set of
measure zero, practically every motion of this
type sooner or later become ergodic.

Nevertheless., in engineering applicatious there
alwvays can be found such a characteristic time
interval within which the motion is approximately
periodic, while the transition to ergodicity can
be ignored due to damping.

It 4s worth emphasizing that the transition to
ergodicity is not ‘inevitable” i{f one takes into
sccount non-linear properties of real structures.
Non-1linearities may provide some mechanisms (such
ss dynamical synchronization effects) which
depress the disorder and lead to periodical
motion. In this connection, it 1is relevant to
mention the experiment with coupled chalin of
harmonis oscillators performed by Fermi, Pasta
and Ulam. Instead of ergodicity which was
expected they found periodic oscillations.
However, if dynamical synchronization effects do
not depress ergodicity and if the characteristic
time during which the motion can be approximated
as periodic is too short one has to apply methods
of statistical mechanics.
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